

- Taichi Sumo, Yuki Mori (Okayama University)
- Yasuyuki Nogami (Graduate School of Okayama University)
 - Tomoko Matsushima (Polytechnic University)
 - Satoshi Uehara (University of Kitakyushu)

Recent innovative cryptographic applications are based on ...

- ID-based cryptography
 - We can use **ID-based information** as public key.
 - User name
 - E-main address
 - Phone number etc.
- Group signature authentication
 - Anonymous authentication
 - Attribute-based authentication
- Time release cryptography
 - It keeps the data encrypted until the day for release comes.

Pairing-based cryptography is based on elliptic curve cryptography.

Elliptic curve cryptography (1/2)

Elliptic curve cryptography

E:
$$y^2 = x^3 + ax + b$$
, $a, b, x, y \in \mathbf{F}_{p^n}$

Pairing-based cryptography uses a special class of elliptic curve.

Pairing-based cryptography (2/3)

- Pairing-friendly curves
 - It is defined over extension field (\mathbf{F}_{p^n})
 - The defining equation is

$$E: y^2 = x^3 + ax + b, \quad a, b, x, y \in \mathbf{F}_{p^n}$$

Some conditions should be satisfied
 Torsion group structure
 The number of rational points #E(F_pⁿ)

needs to be divisible by Γ^2 .

n-th vector space

Pairing-based cryptography (3/3)

How to prepare pairing-friendly curves

- It is difficult except for some special curves
 - Barreto-Naehrig (BN) curve : n = 12

Brezing-Weng (BW) curve : n = 8

Setting parameters : p, a, b # rational points r $\underbrace{\text{dimension } n}$ $E: y^2 = x^3 + ax + b$ $a, b, x, y \in F_{p^n}$ $\# E(F_{p^n})$ r

Target of this research

Our contribution (theoretic proof was given)

• If $r \mid \# E(\mathbf{F}_p)$ and n = r

Our contribution (theoretic proof was given)

• If $r \mid \# E(\mathbf{F}_p)$ and n = r

Example

Example 1:

$$p = 11, r = 5,$$

$$E: y^2 = x^3 + 6x + 3,$$

$$\#E(\mathbb{F}_p) = 15, \ \#E(\mathbb{F}_{p^5}) = 161625.$$

Conclusion

This work has focused on *n*

$$n = r$$

- Torsion structure appears
- Further consideration
 - Consider pairing-based cryptographic applications.

Thank you for your attentions.