A Relation between Group Order of Elliptic Curve and Extension Degree of Definition Field

Taichi Sumo, Yuki Mori (Okayama University)
Yasuyuki Nogami (Graduate School of Okayama University)
Tomoko Matsushima (Polytechnic University)
Satoshi Uehara (University of Kitakyushu)

Research Background

Recent innovative cryptographic applications are based on ...

Research Background

ID-based cryptography

- We can use ID-based information as public key.
- User name
- E-main address
- Phone number etc.
- Group signature authentication
- Anonymous authentication
- Attribute-based authentication
- Time release cryptography
- It keeps the data encrypted until the day for release comes.

Research Background

Pairing-based cryptography is based on elliptic curve cryptography.

Elliptic curve cryptography (1/2)

Elliptic curve cryptography

$$
E: y^{2}=x^{3}+a x+b, \quad a, b, x, y \in \mathrm{~F}_{p^{n}}
$$

Elliptic curve cryptography (2/2)

Infinity point
Elliptic curve cryptography

Research Background

Pairing-based cryptography uses a special class of elliptic curve.

Pairing-based cryptography

Elliptic curve cryptography

Finite field

ID-based cryptography
Group signature authentication Time release cryptography

- EC discrete logarithm problem
- Elliptic curve addition
- Extension field
- Arithmetic operations
- Addition
- Multiplication

Pairing-based cryptography (1/3)

Pairing-based cryptography

Pairing-based cryptography (2/3)

- Pairing-friendly curves
n-th vector space
- It is defined over extension field $\mathrm{F}_{p} n$
- The defining equation is

$$
E: y^{2}=x^{3}+a x+b, \quad a, b, x, y \in \mathrm{~F}_{p^{n}}
$$

- Some conditions should be satisfied

Torsion group structure

- The number of rational points $\# E\left(\mathrm{~F}_{p^{n}}\right)$

Pairing-based cryptography (3/3)

- How to prepare pairing-friendly curves
- It is difficult except for some special curves
- Barreto-Naehrig (BN) curve : $n=12$
- Brezing-Weng (BW) curve : $n=8$
- Setting parameters :
- p, a, b
- \#rational points r

$$
\begin{gathered}
E: y^{2}=x^{3}+a x+b \\
a, b, x, y \in \mathrm{~F}_{p^{n}} \\
\# E\left(\mathrm{~F}_{p^{n}}\right) \quad r
\end{gathered}
$$

Target of this research

Algebraic closure

- Prime field F_{p} and n-th Extension field $\mathrm{F}_{p^{n}}$

In the same Elliptic curve closure

- Over Prime field $E\left(\mathrm{~F}_{p}\right)$ and ex. field $E\left(\mathrm{~F}_{p^{n}}\right)$

Our contribution (thoorticip poot was given)

- If $r \mid \# E\left(\mathrm{~F}_{p}\right)$ and $n=r$

: Rational points

Our contribution (thoorticip poot was given)

- If $r \mid \# E\left(\mathrm{~F}_{p}\right)$ and $n=r$

: Rational points

Example

Example 1:

$$
\begin{aligned}
p & =11, r=5, \\
E: y^{2} & =x^{3}+6 x+3, \\
\# E\left(\mathbb{F}_{p}\right) & =15, \# E\left(\mathbb{F}_{p^{5}}\right)=161625 .
\end{aligned}
$$

Conclusion

This work has focused on $n=r$

- Torsion structure appears
- Further consideration
- Consider pairing-based cryptographic applications.

Thank you for your attentions.

